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Abstract - -Numerical  simulations of drainage and drying at low capillary number  are performed. Drainage 
is simulated by means  of the s tandard invasion percolation algorithm. Simulations of  drying are based 
on an invasion algorithm combining elements of  the invasion percolation algorithm with the computat ion 
of  the vapour flux at each elementary liquid-gas interface. The simulations show that the invasion front 
is the very same fractal object in drainage and in drying. Specific features of  drying are investigated. It 
is shown that the evaporation front should be clearly distinguished from the invasion front. In the presence 
of gravity forces, the disconnected cluster erosion mechanism is very effective and no disconnected cluster 
can survive outside the invasion front region. In the absence of gravity forces, the simulations indicate 
that drying of an initially saturated capillary-porous medium cannot be described according to the 
cont inuum approach to porous media. 
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1. I N T R O D U C T I O N  

Invasion percolation models, Wilkinson & Willemsen (1983), Chandler e t  al. (1982), Lenormand 
e t  al. (1988), Furuberg e t  al. (1988) to quote only a few representative references, have been used 
extensively to simulate slow drainage processes in a porous medium, i.e. the slow displacement of 
a wetting fluid by a non-wetting fluid in a porous medium. Experimental studies (Masmoudi e t  al. 

1992), as well as numerical simulations (Prat 1993), have shown that drying of initially saturated 
porous media may also be analysed to a certain extent in terms of invasion percolation. As shown 
in Prat (1993), however, drying presents some specific aspects that lead one to consider a modified 
form of invasion percolation, the main features of which are briefly recalled in section 3. Under 
these circumstances, the purpose of this paper is to study more precisely the main similarities and 
differences between drainage at low capillary numbers and drying. In fact, throughout this paper, 
results obtained for drainage at low capillary numbers serve as references to which results for drying 
are compared. At this stage, it should be noticed that in the classic continuum approach to drying 
in porous media [see Whitaker (1977) for example] the modelling of the liquid-phase flow in terms 
of generalized Darcy's law and relative permeability concept is basically analogous to the 
macroscopic modelling of drainage. Thus it is clearly of interest to investigate the analogy between 
drainage and drying. We also describe features of drying which are specific to drying. In this paper, 
however, the study is restricted to two-dimensional processes. We are aware that significant 
differences exist between three-dimensional and two-dimensional invasion percolation, mainly 
because of the trapping phenomenon of the wetting phase which is important in two dimensions 
and almost negligible in three dimensions. Nevertheless, much insight may be gained from 
two-dimensional simulations. Also, we assume an isothermal process. Naturally, drying is never 
a truly isothermal process since evaporating the liquid cannot occur without transfer of energy. 
However, we believe that the main features of the phase distribution evolution, that are described 
in this paper, are not significantly affected when small temperature gradients are present (as in the 
case of drying at low drying rate). Clearly, the emphasis here is on the understanding of the fluid 
transport mechanisms occurring within the pore spaces during drying and their relation to 
drainage. Our study applies to non-hygroscopic capillary-porous materials [see Keey (1972)] and 
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is, in fact, of  interest not only to drying but also to certain light oil vaporization processes occurring 
in a fractured reservoir (Morel et al. 1990). 

2. D R A I N A G E  AS AN INVASION P E R C O L A T I O N  PROCESS 

Drainage in a porous medium has been extensively studied. In the absence of gravity forces, 
Lenormand (1985) has proposed a phase diagram mapping the various drainage regimes in terms 
of a capillary number Ca, which is the ratio of viscous forces to capillary forces, and the ratio M 
of the displacing fluid viscosity to the displaced fluid viscosity. As shown experimentally and 
numerically (Lenormand et  al. 1988), three main regimes can be distinguished depending on 
whether capillary or viscous forces dominate. The regime associated with very low capillary 
numbers is termed capillary fingering and can be simulated by means of the standard invasion 
percolation algorithm. As drying is generally a very slow process associated with very low capillary 
numbers, we only consider drainage in the limit of very small capillary numbers. Physically, this 
means that the viscosity plays no role and that the drainage process is entirely controlled by the 
capillary forces. Hydrostatic equilibrium is, in fact, assumed at each step of the invasion process. 
In the absence of gravity forces, this means that the pressure is uniform and constant in each fluid 
phase. Naturally, there exists a pressure jump, the capillary pressure, between the pressures of each 
fluid phase. Gravity effects, however, are present in most cases since the two fluids very often have 
significantly different densities. This is especially true in drying since in drying the liquid phase, 
typically water, is 1000 times as dense as the gas phase, typically air, under standard conditions. 
Wilkinson (1984) has proposed a method, based on the assumption of quasi-static equilibrium 
between the gravity forces and the capillary forces, for simulating the gravity effects by means of 
the invasion percolation algorithm. The validity of Wilkinson's approach has been demonstrated 
in two dimensions by the simulations and experiments of Birovljev et al. (1991) and in three 
dimensions by the experiments of Clament et al. (1985, 1987) and Hulin et al. (1988). In this 
approach, the porous medium is modelled by a square lattice of size L x L consisting of nodes 
(pores) and bonds (throats). The width l of the bonds is randomly chosen according to a given 
distribution law (a uniform distribution is used in the present paper). As the capillary pressure 
associated with each throat is inversely proportional to I, l ~ represents the threshold value for the 
normalized capillary pressure needed to invade the throat connecting two pores. When the gravity 
forces are taken into account, an invasion potential Q depending on l, the hydrostatic pressure 
gradient and the throat's position z measured from the top edge of the lattice is assigned to each 
throat. One may define this potential as 

Q = - 7  I - B  ~ _ z )  +const .  [1] 
H- 

where B, which can be thought of as a dimensionless hydrostatic pressure gradient, is the Bond 
number which accounts for the competition between capillary and gravity forces, 

A p g a  2 
B - [2] 

7 

in which a is the distance between two nodes of the network and / is the interfacial tension. To 
simulate drainage, the network is assumed to be initially fully saturated by the wetting fluid. The 
non-wetting fluid enters through the top edge of the network. The wetting fluid escapes through 
the bottom edge of the network (figure 1). At each step the pore which is invaded is the one which 
is connected to the region already invaded by the throat that has the lowest potential. Because of 
the incompressibility of the displaced fluid, regions which become surrounded by the invading fluid 
cannot be invaded and are trapped. The process ends when the bottom edge is reached. This final 
stage of the invasion process is the breakthrough point (BT). 

3. D R Y I N G  MICROSCOP IC  S I M U L A T O R  

As shown in Prat (1993), isothermal drying of non-hygroscopic capillary-porous materials can 
be simulated by combining elements of the standard invasion percolation algorithm with the 
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Figure I. Schematic of drying and drainage of a 2-D network. 

computation of the binary diffusion of the vaporized species in the gas phase, which is assumed 
to be made up of the vapour of the liquid and an inert component, and the evaporation flux at 
each elementary liquid gas interface. As in the standard invasion percolation algorithm, an 
invasion potential is assigned to each throat according to [1]. The gas-phase diffusion computation 
is performed at each invasion step by expressing the mass flux balance at each node occupied by 
the gaseous phase under the following assumptions [see Prat (1993) for more details] 

the diffusion process is quasi steady 
- - a t  each elementary liquid-gas interface, local thermodynamic equilibrium is assumed (the 

Kelvin effect is, however, neglected) 
-- l iquid films, if any, along the walls of the pores or throats occupied by the gaseous phase are 

not taken into account 
--one-dimensional transport by diffusion is assumed in each throat occupied by the gas phase. 

As for the drainage case, the network is initially completely saturated by liquid. At the top edge 
of the network, a uniform and constant local mass transfer coefficient is used to compute the flux 
of the vaporized species. Zero flux conditions are imposed at the lateral and bottom edges of the 
network. The vaporized species escapes through the top edge of the network (figure 1). The 
simulation of drying is based on the following procedure: (1) every cluster present in the network 
is identified; (2) the throat connected to the already invaded region which has the lowest potential 
is identified for each cluster; (3) the concentration of the vaporized species is determined at each 
node occupied by the gaseous phase; (4) the evaporation flux at the boundary of each cluster is 
computed; (5) for each cluster, the mass loss during an elementary time step is computed and is 
used for computing the emptying of the throat selected in (2); (6) the throat among the throats 
selected in (2) which empties the first is declared invaded as well as the adjacent pore; and (7) the 
phase distribution within the network is updated and the above-described procedure is repeated. 
Contrary to standard invasion percolation, the regions which become surrounded by the invading 
fluid can be invaded. The process ends when the network is completely occupied by the invading 
fluid. 

4. S I M I L A R I T I E S  BETWEEN D R Y I N G  AND D R A I N A G E  AT LOW Ca 

4.1. Invasion front and drying front 

Low evaporation rate drying fronts have been observed in a number of experimental studies 
(Maneval et al. 1991; Masmoudi et al. 1992; Shaw 1987 among others). They resemble the drainage 
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fronts at low capillary numbers observed experimentally, notably by Lenormand et  al. (1988), 
C16ment et  al. (1985, 1987) and Birovljev et  al. (1991). In this section, we show that the invasion 
front obtained by means of the standard invasion percolation algorithm, which simulates drainage 
at low capillary numbers, and the drying front obtained by means of the simulator described in 
section 3 are identical. The remainder of the section is devoted to a recall of the main results which 
have been obtained on two-dimensional invasion fronts in drainage which are also relevant to 
drying fronts. The front is defined as the external frontier of the invading fluid cluster which is in 
contact with the wetting phase. The front is one part of the liquid-gas interface within the system. 
The other part consists of the frontier of the disconnected wetting fluid clusters, i.e. the liquid 
clusters which are not connected to the bottom edge of the network shown in figure 2. Thus, if, 
at a given step, all the liquid disconnected clusters were replaced by gas, the gas-liquid interface 
would be made of all the sites belonging to the front. More specifically, the front is made of the 
sites occupied by the non-wetting fluid and which have at least one liquid neighbour which does 
not belong to a disconnected liquid cluster. The front is shown in figure 3 at different stages of 
the drying process. In figure 3, the drainage front, obtained by means of the ordinary invasion 
percolation algorithm, is also shown at stages of the drainage process corresponding to the very 
same number of invaded bonds in the main wetting fluid as in the simulation of drying [the "main" 
cluster is the region occupied by the wetting fluid which is connected to the bottom edge of the 
network. It is convenient to distinguish the main cluster from the disconnected clusters, i.e. the 
clusters completely surrounded by the invading fluid (figure 2)]. In both cases, i.e. drainage and 
drying, the same 100 x 100 network was considered. No gravity forces, i.e. B = 0, are taken into 
account in these simulations. Figure 3 clearly shows that the drainage front and the drying front 
are the very same object. This is not surprising and, in fact, is fully consistent with the drying 
algorithm presented in section 3. As far as the main liquid cluster is concerned, the selection 
procedure of the successive bonds and sites invaded in the main liquid cluster is identical in ordinary 
invasion percolation and in the drying algorithm. In other words, the sequence of the bonds and 
sites successively invaded in the main clusters is clearly independent of the fact that, contrary to 
ordinary invasion percolation, the disconnected liquid clusters are invaded and possibly dry up 
during the process. Naturally, this similarity between the drying front and the drainage front only 
holds up to the breakthrough point, i.e. when the gas phase reaches the bottom edge of the network. 
In two-dimensional ordinary invasion percolation, the invasion process stops at breakthrough. 
In drying, the invasion process may continue up to a complete dry-out of the network. In drying 
also, the first time the gaseous phase reaches the bottom edge of the network may be termed 

gaseous phase 
(non-wetting fluid) 

cluster 
fluid) 

rid) 

Figure 2. Schematic picture of the phase distribution within the network in terms of main cluster, 
disconnected clusters and front. 
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Figure 3. Phase distributions at breakthrough in drainage and in drying for the same realization of the 
network for B = 0. The disconnected clusters are in grey, the clusters connected to the exit side in black, 
the non-wetting fluid and the solid phase in white. The front forms the frontier between the regions in 

black and the region occupied by the non-wetting fluid. 

breakthrough. Hence we will, for convenience, distinguish a first drying phase up to breakthrough 
from a second drying phase which takes place after breakthrough. The first drying phase presents 
many similarities with drainage at low Ca. The second phase is specific to drying and is discussed 
in section 5.3. The results presented in figure 3 correspond to B = 0. However, it is clear that the 
drying front and the drainage front are the same object not only for B = 0 but also in the presence 
of the gravity forces, as shown in figure 4. As discussed above, the sequence of selected bonds in 
the main cluster is independent of the fact that secondary invasions take place in the disconnected 
clusters in drying. Thus, for a given network and for the same Bond number, this sequence must 
be identical according to the drying algorithm or the ordinary invasion percolation algorithm. This 
allows us to take advantage of the numerous results concerning the invasion front under gravity. 
Indeed, gravity invasion fronts in porous media have been extensively studied within the framework 
of the gradient percolation model introduced by Sapoval et  al. (1985) for the completely different 
case of diffusion front. The validity of  the gradient percolation model has been verified 
experimentally through the three-dimensional experiments of Cl6ment et  al. (1985, 1987, 1988). 
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Figure 4. Phase distributions in the presence of gravity forces in drainage and in drying for the same 
realization of the network. The disconnected clusters are in grey, the clusters connected to the exit side 
in black, the non-wetting fluid and the solid phase in white. The front forms the frontier between the 

regions in black and the region occupied by the non-wetting fluid. 

However ,  only one value o f  B was used in these exper iments .  Fu r the rmore ,  the s tructure of  the 
f ront  in three d imensions  is quite different from the two-d imens iona l  s tructure which is o f  interest  
for the present  study.  More  recently, Birovljev e t  al. (1991) pe r fo rmed  slow dra inage  exper iments  
as well as compu te r  s imula t ions  in the two-d imens iona l  case over  a range of  B. T h e i r  results on 
the width a o f  the front  and the fractal  d imens ion  o f  the front  are in very good  agreement  with 
the grad ien t  perco la t ion  approach .  Accord ing  to these var ious  studies the front  is a fractal  object.  
Its fractal  d imension ,  as measured  by Birovljev e t  al. (1991), is Dex p ~ 1.34 and is consis tent  with 
the fractal  d imens ion  of  the external  per imeter  o f  the perco la t ion  cluster,  DE ~ 1.37 (Stauffer & 
A h a r o n y  1992). In agreement  with the theoret ical  p red ic t ion  o f  Sapoval  et  al. the exper imenta l  and  
numer ica l  results o f  Birovljev et  al. (1991) are consis tent  with the fol lowing scaling law 

oc B ,,/II + ,'I [3] 
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where v is the correlation length critical exponent (Stauffer & Aharony 
dimensions. In [3], 0. is the width of  the front which is defined as 

[ ~  ( z r -  z )2pr(z ) dz 
0 - 2  

fo ~pf(z ) dz 

where Zr is the mean position of the front, 

1992), v = 4/3 in two 

[4] 

~o °~ zpr(z ) dz 
[~] 

Z r = I ~ ' p f ( z )  
dz 

J 0  

p f ( z )  is the probability of finding one site of the front at z (i.e. the number of  sites located at the 
distance z from the top edge of the system and belonging to the front divided by the total number 
of  sites). As already noted in Prat (1993) and as is made clear by [3], the effect of  gravity is to 
stabilize the drying front. The drying front has a finite width resulting from the equilibrium between 
the capillary forces and the gravity forces. On the contrary, in the absence of  gravity forces, there 
is no characteristic length scale. The front may span the whole network at breakthrough as is shown 
in figure 3. 

4.2. Clusters 

As explained above, the sequence of  invaded bonds and sites in the main cluster is identical in 
drying and in drainage (for a given network, a given B and low Ca). It follows that the disconnected 

(a) main cluster 
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.-.iiiii~.:.:.,.~ii::ii,~i~!~...iiiil....~ii::~:~:~:~:,':ii ::~::~ ..... 

.... . 

~ , .~ : f .~  : ~::::::-'-'~ ," :':':': 
~j~ ',o.~ ~:i~iiiii:,, ~ 

+ 
Figure 5. Birth of  a cluster from the main cluster when the bond and the adjacent site in grey in (a) are 
invaded and successive invasions of the cluster. The liquid phase is in black and the invaded bonds and 

sites are in grey. 
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Figure 6. Phase distributions at breakthrough in drying for four different realizations of a 100 x 100 
network. 

clusters formed in drying and in drainage are identical since a disconnected cluster is, in fact, a 
part of the front which gets disconnected from the front at some stage of the invasion process as 
is illustrated in figure 5. Naturally, once a cluster has been disconnected from the front, it is trapped 
for good in drainage because of the incompressibility of  the fluid. In drying, evaporation takes place 
at the boundary of the disconnected clusters and therefore they eventually disappear through the 
action of evaporation. Thus the birth of  the disconnected clusters is identical in drainage and drying 
but their life is completely different. This is clearly shown in figure 3 where some of the clusters 
visible in the top edge region in drainage have disappeared in drying. Again, the fact that the birth 
of the disconnected clusters is identical in drying and drainage only holds up to the breakthrough. 
At breakthrough, invasion of the liquid stops in drainage but continues in drying. In the absence 
of gravity forces, clusters of  an arbitrary large size are created. In the presence of gravity forces, 
the cluster size cannot exceed a certain size since equilibrium between the capillary and gravity 
forces must be enforced. Wilkinson (1984) has shown that the size of  the largest clusters scales as 

Lmax oC B ,.,'u +,.i [6] 

It is worth noting that this scaling is fully consistent with the front thickness scaling ([3]). Clearly, 
since a cluster is basically a part of  the invading front which becomes disconnected, the size of the 
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largest clusters should be of the order of the deepest "fjords" of the front, i.e. of  the order of the 
front thickness a. 

5. D I F F E R E N C E S  BETWEEN D R Y I N G  AND D R A I N A G E  AT LOW Ca 

5. 1. Cluster erosion mechanism 

As discussed above, before reaching breakthrough, the disconnected clusters being formed in 
drainage and in drying are initially identical (for a given porous structure). In drying, however, 
as evaporation takes place at the boundary of the cluster secondary invasions occur and eventually 
the cluster disappears. Figure 5 shows the various stages of "life" of a cluster from birth to death. 
As can be seen from figure 5, secondary invasion of  a cluster generally gives birth to two clusters 
of smaller size, these two clusters are then invaded and each gives birth to two smaller still clusters. 
This process continues until the clusters being formed evaporate without giving birth to smaller 
clusters. As discussed in section 5.4 and shown in figure 4, the cluster erosion mechanism is much 
more effective in the presence of gravity forces. In the absence of gravity forces, one may wonder 

~ "- ~ ._ . ._ . . .__  0.9612 - -  - " ~ 2 - ~  

L _ 

~ 0.9784 

.y269 

Figure 7. Phase distributions within the network at various stages of  drying together with the vaporized 
species normalized gas concentration distribution within the gaseous phase (B = 0). 
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whether this elimination mechanism is significant before breakthrough. As can be seen from 
figure 6, various situations may be encountered depending on the realization of  the network. 

5.2. Invasion front and evaporation .front 

As discussed in section 4.1, the drying front and the drainage front are the very same fractal 
object and may be termed the invasion front. The invasion front, however, should be clearly 
distinguished from the evaporation front, i.e. the frontier between the cluster region and the dry 
zone where the diffusive transport  in the gas phase becomes important.  To visualize the evaporation 
front, the vaporized species normalized gas phase concentration distribution is shown in figure 7 
as well as the phase distribution at various stages of drying. As can be seen from figure 7, the 
concentration is quasi-uniform and very close to the equilibrium concentration at the liquid-gas 
interfaces within the cluster zone. This indicates that the vaporized species diffusive transport in 
the gas phase is almost zero within the cluster zone. Figure 7 shows that the evaporation front 
roughly forms the upper boundary of the cluster zone. To further characterize the evaporation 
front, one considers the sites occupied by the gaseous phase and such that all first neighbour sites 
are occupied by the gaseous phase (those sites are such that each of their connecting throats to 
the neighbour sites are occupied by gas). As illustrated in figure 8, this type of site may be 
encountered within the cluster regions where they are isolated and scattered. In fact, they are 
essentially encountered in the gaseous zone where they form a well identified region of neighbouring 
sites. The evaporation front forms the lower boundary of this region. 

5.3. Drying after breakthrough (in the absence of gravity forces) 

What happens after breakthrough is specific to drying since invasion of the wetting phase stops 
at breakthrough in drainage. In the absence of gravity forces, there are generally in the network 
two very large clusters born of the main cluster and a family of smaller clusters of various size at 
breakthrough, as shown in figure 6. Then subsequent invasions of the clusters take place. In 
agreement with the erosion mechanism described in section 5.1 the clusters present in the system 
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Figure 8. Geometric definition of the evaporation front in terms of the frontier of the region containing 
the gaseous sites having four gaseous first neighbour sites. The isoconcentration line corresponding to the 

equilibrium concentration in the gas phase is also shown (see also figure 7). 
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Figure 9. Drying after BT (B = 0). Correlation length, expressed in network units (distance between two 
sites), of the liquid clusters as a function of the normalized number of invaded bonds for four different 

realizations of a 100 x 100 network. 

become smal ler  and  smal ler  and  are progress ively  e l iminated  by evapora t ion .  This is clearly shown 
in figures 9 and 10 where the cor re la t ion  length and the average clusters size [see Stauffer & 
A h a r o n y  (1992) for definitions] are p lo t ted  as a funct ion o f  the normal ized  number  o f  invaded 
bonds  af ter  b r e a k t h r o u g h  for  4 real iza t ions  o f  a 100 × 100 ne twork  (the normal ized  number  N o f  
invaded  b o n d  is defined as N = ( n  - n B v ) / ( n t o t  - -  n B T )  where n is the number  o f  invaded bonds ,  nBT 
is the number  o f  invaded  bonds  at  BR and nto t the to ta l  number  o f  bonds  in the network) .  The 
evolu t ion  o f  the number  o f  clusters present  within the ne twork  after  BT depends  on two 
mechanisms:  spl i t t ing o f  a cluster into smal ler  clusters and  cluster  e l iminat ion  by evapora t ion .  At  
some steps o f  the process,  the successive splits o f  the clusters into smal ler  clusters exceed the loss 
o f  clusters by evapora t ion ,  leading to an increase o f  the number  o f  clusters present  in the system. 
At  o ther  times, the cluster  e l imina t ion  mechanism due to evapora t ion  is p r e p o n d e r a n t  and  the 
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Figure I0. Drying after BT (B = 0). Average liquid cluster size, expressed in number of sites, as a function 
of the normalized number of invaded bonds for four different realizations of a 100 × 100 network, 
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Figure 11. Drying after BT (B = 0). Number of clusters within the network as a function of the normalized 
nunaber of invaded bonds for four different realizations of a 100 x 100 network. 

number of clusters decreases as can be seen from figure l l. The fact that the clusters get smaller 
and smaller after BR as the non-wetting fluid saturation increases, i.e. the occupation probability 
increases after BT, is consistent with the percolation theory. Here, however, the occupation 
probability is not uniform since liquid is more likely to be stripped from the clusters located close 
to the top edge. Thus the occupation probability is greater in the top region of the network. In 
other terms, a dry zone progressively develops from the top edge as can be seen from figure 7. 

5.4. Do, hTg in the presence o[gra~ity Jorces 

As explained in section 4.1, taking into account the gravity forces introduces a length scale 
resulting from the equilibrium between the capillary forces and the gravity forces. In this section 
we assume that this length scale, which one may consider to be the front width a defined by [4], 
is small relative to the size of the system, ~r < L. Under these circumstances, one observes a well 
defined region of finite vertical extension, of width o, containing the invasion front and most of 
the disconnected clusters (figures 4 and 13). One striking feature of drying in the presence of gravity 
forces is that there is almost no disconnected cluster outside the invasion front region. The 
disconnected clusters are mainly located within the "fjords" of the invasion front. Consistently, the 
vaporized species gas-phase concentration is quasi-uniform within the disconnected cluster region 
and very close to the equilibrium concentration as can be seen from figure 12. As for the "no 
gravity" case discussed in section 5.2, the evaporation front should be distinguished from the 
invasion front. In our simulations, the evaporation front forms the upper boundary of the invasion 
front region as shown in figure 12. Figure 12 makes it clear that there is ahnost no evaporation 
at the boundary of the disconnected clusters located within the "fjords" away from the evaporation 
front. The evaporation taking place at the evaporation front is associated with disconnected clusters 
as well as the main cluster. Thus, the evaporation processes cause, on the one hand, the migration 
of the invasion front downwards, and on the other hand, the stripping of the disconnected clusters. 
These two processes, migration of the invasion front and erosion of the disconnected clusters, take 
place simultaneously in such a way that no disconnected cluster remains outside the invasion front 
region. According to the gradient percolation approach ([3]), the structure of the two-phase region, 
i.e. the invasion front region, is statistically independent of time and depends only on the Bond 
number. This means that, except for the early and the final stages of the process, quantities such 
as the number of disconnected clusters present within the two-phase zone, the width of the invasion 
front, the fraction of the invasion front and the fraction of the disconnected clusters concerned by 
evaporation, . . .  are statistically constant for a given Bond number. This is clearly evident by our 
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Figure 12. Phase distributions within the network in the presence of gravity forces at various stages of 
drying together with the vaporized species normalized gas concentration distribution within the gaseous 

phase. 

simulation as can be seen f rom figures 13-16. Thus, for sufficiently large Bond numbers,  there 
is a length scale separation between the thickness o f  the front  and the size o f  the system. This 
indicates that, cont rary  to the no gravity or too small Bond number  case, a macroscopic  description 
is possible. In fact, for the simple geometry considered in this paper, the problem takes the form 
of  a moving evaporat ion front problem analogous to the Stefan diffusion tube problem (Bird 
et  al. 1960). This is evident in figure 17 which shows that  the mean position o f  the front zf is 
propor t ional  to x/t (except in the very first phase o f  drying when the front  is not  yet established). 
Thus 

IJMF 21,5---L 

zf oc x/t when a <<L [7] 
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Figure 13. Drying for B > 0. Drying invasion front thickness, averaged over four realizations of a 
100 x 100 network, as a function of the number of invaded bonds. 
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Figure 14. Drying for B > 0. Correlation length, averaged over four realizations of a 100 × 100 network, 
of the liquid clusters as a function of the number of invaded bonds. 
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Figure 17. Time evolution of the mean position of the front, averaged over four realizations of a 100 x 100 
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Also, as can be seen from figure 18, one observes that the drying rate rh, i.e. the evaporation flux 
at the interface, is proportional to t -'/2, as for the Stefan diffusion tube, except naturally in the 
early stages of drying, i.e. 

r h o c t  -~/2 f o r a<<L  and z f> t r  [8] 

As shown in figure 18, however, important errors can be expected if a simple moving diffusion front 
model is used to predict the evaporation flux in the early stages of the process. Clearly, a specific 
study of this phase of drying is needed to develop a fully predictive model at the macroscopic level. 
This will be the subject of  future work. 

6. C O N C L U S I O N S  

In this paper, similarities between drainage at low capillary number and drying at low drying 
rate have been evidenced. In particular, it has been shown that the drying front and the drainage 
front are the very same fractal object. This also holds in the presence of gravity forces. In that case, 
the front has a finite thickness resulting from the equilibrium between the capillary and the gravity 
forces. The front thickness as well as the maximum size of the clusters that appear during drainage 
or drying obey scaling laws that are derived from the gradient percolation approach. However, the 
drying invasion front should be distinguished from the evaporation front which roughly forms the 
boundary between the invasion front-disconnected cluster region and the dry region. Accordingly 
the diffusive transport in the gas phase is very small within the cluster region. 

In the absence of  gravity forces, the simulations clearly show that drying of an initially saturated 
capillary porous medium cannot be described according to the classic continuum approach to 
porous media since the size of  the liquid clusters may be of the order of the size of the system. 
In other words, no length scale separation between the size of the humidity heterogeneities and 
the size of the system can be expected except towards the final stages of the process when the cluster 
size becomes small relative to the size of the system. In the presence of gravity forces, as the process 
is characterized by a moving two-phase zone of finite thickness, a macroscopic approach is possible, 
at least for the simple geometry considered in this paper and in the limit of sufficiently large Bond 
numbers, i.e. when the front thickness is small relative to the system size. Under these circum- 
stances, the problem takes a form close to the classic Stefan diffusion tube problem. 

Naturally, viscous effects and temperature gradients that are not taken into account in the 
present approach may modify the overall picture of the process described in this paper. However, 
at least for drying at low drying rate, these effects are believed to modify only some details but 
not the main features of our results. Also, the simulations presented in this paper are restricted 
to two-dimensional networks. More realistic predictions could be obtained by means of a 
three-dimensional simulator. However, some results are such that the analogy between the drying 
front and the drainage invasion front undoubtedly holds in three dimensions. This allows one to 
take advantage of the numerous results concerning the structure of the invasion front in three 
dimensions [see, for instance, Gouyet et al. (1988)]. 
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